Lecture slide
Chapter 0. Orientation [pdf]
Chapter 1. Introduction [pdf]
Chapter 2. Neural network [pdf]
Chapter 3. EBPA [pdf]
Chapter 4. Gradient descent [pdf]
Chapter 5. Model tunning [pdf]
Chapter 6. CNN [pdf]
Chapter 7. RNN [pdf]
Chapter 8. Attention [pdf]
Chapter 9. Transformer [pdf]
Chapter 10. Generative models [pdf]
Chapter 11. Learning strategies & Neural architecture [pdf]
Lecture slide
Chapter 1. Introduction [pdf]
Chapter 2. Math 1 - Linear Algebra [pdf]
Chapter 3. Math 2 - Prob and Stats [pdf]
Chapter 4. Regression [pdf]
Chapter 5. SVM [pdf]
Chapter 6. Neural Network [pdf]
Chapter 7. Text Preprocessing [pdf]
Chapter 8. Embedding [pdf]
Chapter 9. Time-Series Data Processing [pdf]
Chapter 10. Transformer [pdf]
Chapter 11. LLMs [pdf]
Lecture slide
Chapter 0. Orientation [pdf]